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NUMERICAL SIMULATION OF FULLY NON-LINEAR 
STEADY FREE SURFACE FLOW 

F. LALLI, E. CAMPANA AND U. BULGARELLI 
INSEAN, Italian Ship Model Basin. Via di Vallerano 139, 1-00128 Rome, Italy 

SUMMARY 

The fully non-linear free surface potential flow past a 2D non-lifting body is computed. The numerical 
method is based on the simple layer integral formulation; the non-linear solution is obtained by means of an 
iterative procedure. Under some hypotheses, viscosity effects at the free surface are considered. All the 
numerical results obtained have been tested against analytical solutions and experimental results. 
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1. MATHEMATICAL FORMULATION 

We consider the mathematical formulation governing the two-dimensional steady state potential 
flow due to the motion of a non-lifting body &? submerged in a fluid of infinite depth. The 
extension to three-dimensional cases can be easily obtained. The fluid domain 9 is bounded on 
the upper part by a free boundary Y and unbounded in the other directions. The frame of 
reference is assumed to be fixed with the body: the x-axis is oriented as the uniform stream 
U=(U,O),  the y-axis is positive upwards and the Cartesian equation of the undisturbed free 
surface is given by y = 0 (see Figure 1). We assume that the fluid velocity u =(u, u)  can be written as 

u = v4, 
where 

m Y)'UX+Cp(X, Y).  (1) 
In (1) the term Ux is the free stream potential and the term ~p(x,y) takes into account the 

interaction between the free surface and the body. The potential +(x, y )  satisfies Laplace equation 
inside $3-a: 

V"(x, y)=O, (x, y) E [wz -an {y:- 00 <y<q(x)}, (2) 
where a =B u d g  c Rz is the body and y=q(x) is the Cartesian equation of the free 
boundary 9. 

The boundary condition on the body surface is 

~ J x ,  y )  = 0 on d&?. (3) 
Furthermore, two conditions are necessary at the free surface 9. The kinematic one follows from 
the property of an interface, which cannot be crossed by the fluid: the normal velocities of the fluid 
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Figure 1. Definition sketch of the problem 

and of the interface itself must be equal. In particular, for the steady state case they must be equal 
to zero: 

The dynamical boundary condition follows from the assumption that the pressure over the free 
surface is constant. The Bernoulli equation, in which we have assumed that surface tension effects 
are negligible, gives 

Finally, a condition at infinity must be imposed: 

lim IV$I=U. (6) 
x-t--a, 

The exact formulation of free surface potential flows is characterized by the presence of 
a double non-linearity, since conditions (4) and (5),  both containing quadratic terms, have to be 
applied on a curve whose shape is itself an unknown of the problem. 

For computational purposes we need to obtain a unique boundary condition for Y by 
eliminating ~ ( x )  between (4) and (5). Differentiating (5) with respect to x (remembering that the 
RHS is evaluated at y=?(x)) and upon substitution in (4), the following unified condition is 
finally obtained 

4 X k  r ) V 4 ( x ,  r )  * V4x(x7 r )  + 4 Y k  r )  CV4 (x, ?) Vdy(x7 r )  + sl = 0. (7) 

In obtaining the former condition, we must require that 

Thus the vertical component of the fluid acceleration must be different from -g; this limit 
concerns the flow stability (with respect to the wave-breaking phenomenon). 

The problem described so far can be revisited by considering a curvilinear abscissa 1 defined 
along the free boundary, which in the steady state case is a streamline of the flow. Therefore the set 
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of boundary conditions (4), (5), (7) can be rewritten as 

4T(x7 V ) 4 l l ( X ,  4 9 + S 4 Y ( X 7  v )=O.  (11) 
It is worth noticing that (9Hll) are formally identical for 2D and 3D cases; this formulation 
seems to be the most natural for the interface conditions, especially in view of dealing numerically 
with the fully non-linear problem in both two and three dimensions. The equivalence between (4), 
(5) and (9), (10) is obvious, while for (7) and (11) it can be easily shown that 

with I =(a, jl) the unit vector tangent to the free boundary (see Figure 1); but, if K = qxx/(l +v: )~ / ’  
is the curvature and n = (fl, -a) is the internal normal unit vector, 

ai  
a i  

Vq5*-= -KV&*n=O 

and 

V 4 ~ V 4 C V ( V 4 ) * ~ 1  .I=($: + 4 , 2 ) ( . 2 4 x x + 2 a j 1 4 x y + P 2 4 y y )  

= 4 ~ 4 x x + 2 4 x 4 y ~ x y + 4 Y 2 4 y y 7  

since, of course, a#y = ficpx. 

and its linearized versions. 
In the next section we will discuss the numerical solution of the problem (1)-(3), (6), (lo), (11) 

2. LINEARIZED FORMULATIONS: SOME DISCUSSIONS ABOUT 
NUMERICAL IMPLEMENTATION 

The mathematical model outlined before describes the wave resistance problem, one of the typical 
topics in naval hydrodynamics. 

In this work the fully non-linear free surface flow will be computed by means of a numerical 
scheme implying an iterative procedure: the first step will be the solution of the linearized 
problem. 

The simplest linear formulation is obtained by assuming the flow to be a small perturbation of 
the uniform stream; the shape of the free surface must, of course, be very smooth. Making use 
of (1) and neglecting the non-linear terms in both (4) and (9, we get the linearized interface 
conditions 

UVX = VY on y=O (12) 
U 
9 

q=- -qx  ony=O 

and the well known Neumann-Kelvin condition 

(14) q x x + s q y = O  9 on y=O. 
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It is worth noticing that, for this formulation, theorems for solution existence and uniqueness 
have been given in Reference 1. This kind of linearization can give reasonable results not only 
when the body velocity is small enough but also if the body is either very slender or deeply 
submerged. Dawson' proposed another type of linearized formulation which seems to be more 
realistic for bodies moving near the free surface and for floating bodies. As basis fluid motion he 
assumed the free surface flow past the body with zero Froude number (the free surface behaves 
like a rigid plane wall). Following Dawson, we write 

4(x, Y)=(Po(x, Y)+(Pl (X,  Y) ,  (1') 

where cpo is the just defined basis flow, characterized by the property (pOy(x, O ) = O ,  and q1 is the 
free surface potential. Neglecting the squares of this last term as well as its products with q, we get 
Dawson's linear formulation 

cpox?x=(Ply on y = o ,  (12') 

Dawson also proposed a very simple and effective numerical procedure based on the simple layer 
potential formulation; perhaps the Dawson method could be considered as the natural extension 
to naval hydrodynamics of the method of Hess and Smith.3 The conventional naval hydro- 
dynamics approach implies the use of a very complicated Green function4 satisfying the linear 
free surface conditions. Two important advantages are therefore connected with Dawson idea: 
first, the simple layer potential is very easy to treat computationally and the distribution of panels 
on the free surface allows one to consider different boundary conditions; secondly, extension to 
the non-linear case is also possible without introducing any substantial variation in the proced- 
ure, which can maintain the original simplicity also for the non-linear problem. A peculiarity of 
the Dawson scheme is the approximation proposed for the derivative dqo lx/dx in the convective 
term of (14),  i.e. a second-order four-point upwind operator (see below) characterized by a very 
light numerical damping. His method has become quite popular for its simplicity and effect- 
iveness; in the wake of Dawson, several numerical papers have appeared in the literature. Some 
authors deal with the linear problem, discussing the consistency of the different kinds of 
linearization5 proposed in the literature, others deal with enforcement of the radiation condi- 
tioq6, ' while in Reference 8 general criteria are suggested for studying the numerical properties 
(stability, numerical damping and dispersion) of discrete schemes. 

Many authors have pointed out the limitations of the linear formulation: starting from the 
Dawson solution, the subsequent aim is suggested to be the solution of the non-linear problem. 
References 9-12 deal with the second-order problem obtained by means of Taylor expansion. At 
the same time some researchers have started to work on the fully non-linear problem. In 
References 13 and 14 moving panel methods are proposed in which the exact non-linear 
conditions are applied at the free surface, computed step by step, but the features of the numerical 
method were not stressed and no convergence problem was mentioned. Nevertheless, severe 
difficulties will appear as soon as any attempt to update the linear solution iteratively is made; 
these difficulties grow, of course, with increasing Froude number. 

In the present work, with the aid of a two-dimensional test case, it will be shown how the range 
of applicability of moving panel methods depends on the particular numerical scheme adopted: 
we propose an algorithm which enlarges this range.I5 Moreover, to further improve the model, 
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we develop a new dynamic boundary condition in which, under some hypotheses, the effects of 
viscosity at the free surface are taken into a c c o ~ n t . ’ ~  

3. EFFECTS OF VISCOSITY AT THE FREE SURFACE 

Typical gravity waves are lightly damped by the action of a superficial boundary layer. In fact, 
among the free surface phenomena, the presence of a thin boundary layer can also be considered. 
Although a rigid boundary is the commonest source of vorticity, in the case of a free boundary the 
vanishing of the tangential stresses generates vorticity and consequently a viscous boundary 
layer. All real fluid motions are of course rotational; although a flow can be nearly irrotational, 
the relatively small amount of vorticity present in thin layers can be crucial in determining the 
main flow characteristics, as in the case of lifting bodies. 

In our analysis we start from the consideration that the irrotational motion does not fulfil the 
condition of zero tangential stresses at the free surface in the case of a free boundary with 
non-zero curvature. Consequently, we introduce in our model a partition of the flow field into an 
inviscid region, free from vorticity, and a thin viscous layer near the free boundary. Across this 
layer a vorticity jump, connected with the free surface curvature, is considered. 

We do not study the flow details inside the boundary layer but take into account its effect on 
the external flow. Such an effect, however slight it may be (see Figure 4), does improve the 
numerical behaviour of the iterative scheme, allowing the non-linear model to work for higher 
Froude numbers without introducing any artificial numerical recipe. 

To evaluate the viscous effects, we start from the steady Navier-Stokes equation written for 
Y = d x ) :  

V(+u.u+gq)=uxw -vVxo  on 9, (15) 
where w = (0, 0, o) is the fluid vorticity and assuming zero atmospheric pressure. 

which in the steady flow is a streamline. Requiring that 
Since the integral of the LHS of (15) is path-independent, we can integrate both sides along 9, 

lim /ul=U, 
x-*-tcI 

we obtain 

since uxo . l=O.  
The kernel of the curvilinear integral can be transformed as 

where the normal unit vector n is oriented inwards. By substituting (17) into (16), we get 

u2 1 

The normal derivative of o, if the viscous layer is sufficiently thin, can be expressed as the ratio 
between the vorticity jump across the boundary layer and its thickness 6: 
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The expression of Am can be evaluated a d 6  

Aw=2K IV+I, 

where K is the free boundary curvature defined previously. Moreover, an estimation of the 
boundary layer thickness can be given by16 

6%J(?). 

Furthermore, we observe that the velocity distribution in the fluid domain can be decomposed as 

u= v4+ u,, 

v.u,=o, v x u,=o. 

In particular, the velocity at the free boundary can be thought as the sum of IV4l and the jump 
Alu,l of the rotational component across the boundary layer. This jump can be estimated asI6 

where u, is required to satisfy 

A1 u,I N 6Aw. 

Hence we have 

1111 = IV$l+ Afu,l N- IV4I + SAW= 1'741 + 2K6IV4 1. 
By introducing (19)-(22) in (18), neglecting terms of order S2, we get 

where 

The unified free surface boundary condition is obtained from (9) and (23) as 

c1 + W l 4 : ( X ,  ?)41I(X, v)+g4y(x, ?)'AX, ?)4?(X, ?I, 
where 

We observe that in the limiting case of 6-+0 the terms 1, A and p vanish and the inviscid 
conditions (10) and (11) can be obtained respectively from (23) and (24). 

4. THE DISCRETE MODEL 

The numerical solution of the mathematical model given in Section 1 is computed by means of 
a simple layer forrnulati~n.~ Bearing in mind the expression (1) for the potential 4, we write 
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where 
r=JC(x- 5d2 +(Y - r2)21  

and o(C1, C2) is the unknown simple layer potential density. 
To describe the discretization technique, we consider now the 2D linear problem of the free 

surface flow past a submerged circular cylinder; for this case analytical solutions are a~ai1able.l~ 
The velocity potential 4(x, y) is experessed as 

with a and h respectively the radius and depth of the circular cylinder; for the linear case the 
method of images is used. It must be noted that this formulation contains an approximation 
connected with the hypothesis of high submergence: using the dipole potential, the boundary 
condition on the cylinder is approximately satisfied, since the free surface potential contribution 
on the body surface cannot be corrected by a suitable dissymmetrical simple layer distribution. 
Anyway, this formulation has been used for the comparison with the analytical results proposed 
by Havelock.” Thus the Neumann-Kelvin condition (14), where the variables have been 
non-dimensionalized with respect to U and the diameter 2a, can be developed as 

where the Froude number is defined as UIJ(2ag). This is an integral equation of the second type; 
in order to obtain the numerical solution, we discretize a finite part of the undisturbed free surface 
(where the simple layer potential is defined) by means of the collocation method. For the 
unknown function a(x) a piecewise constant variation is assumed: 

71 Xi($ - 3h2) 
(x? + hZ)3 ’ a(xi) = - i = l , .  . . , N ,  

k =  5 1 g k (  & Ik(x)) x = x i  -- Fr2 (27‘) 

where, denoting by Lk the generic linear boundary element of the free boundary, 

The derivative d/dx which appears in (27’) has been implemented by a second-order finite 
difference scheme:2 

An operator of the upwind type has been chosen to enforce the radiation condition (6); in this case 
no boundary conditions are required at the furthest upstream nodes. The numerical behaviour of 
this scheme has been discussed in Reference 8, where it has been shown that the numerical 
damping and dispersion are respectively of fifth and first order. The scheme converges linearly, 
i.e. is of first order, 

The term &(x) can also be derived analyti~ally:~ in this case the radiation condition (6) must be 
imposed explicitly. Numerical experiments performed in this linear case have shown that the 
following conditions must be satisfied at the first node upstream to avoid numerical oscillations 
of the free surface before the body: 

(PxX(x1,0)=0’ Vpv(X1,O) = 0, (28) 
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instead of the more obvious 

9Px(x1,0)=0, (Py(x1,0)=0. (29) 
Of course, for the linear system closure no conditions must be required at the last node 

downstream. The validity of this choice is clearly observed in Figure 2(a). The free surface profile 
given by 

is plotted in Figures 2(b) and 2(c) in comparison with the analytical solution given in Reference 17. 
In Figure 2(b) the numerical solution obtained by means of finite difference implementation is 
plotted, while Figure 2(c) refers to the method employing analytical derivation of the term 1k.X). 
In Figure 2(b) the numerical properties of the scheme demonstrated in Reference 8 can be 
observed: the wave amplitude is retained with good accuracy but for the wavelength the 
behaviour is not so good. Such behaviour can be improved with the second method described 
above, as shown in Figure 2(c). 

Anyway, in the present work the full non-linear formulation has been implemented by means of 
the finite difference scheme, for its simplicity, since the main goal of this paper is to outline the 
features of the non-linear procedure. In a future work we will extend the method to the 3D case, 
implementing the more accurate scheme for Zk(x). 

Let us consider now the fully non-linear problem; we will refer, for simplicity, to the inviscid 
formulation (10) and (11) non-dimensionalized with respect to the body length L and the 
velocity U .  The extension to the analogous conditions (23) and (24) is obvious, taking into 
account that all the terms including viscosity effects have been considered explicitly. 

The body surface 893 and part of the free surface 9, which is an unknown of the problem, are 
discretized by means of linear elements; as in the linear case, the simple layer density o is assumed 
to be constant on every boundary element. During the iterative procedure the free boundary Y is 
‘followed’, step by step, by updating its discretization and, of course, the influence matrices. At the 
first step, to initialize the procedure, the potential flow and the shape of Y are computed with the 
linear Dawson’ formulation (12’H14) 

The iterative scheme consists of two cycles: an ‘internal one, in which the non-linear system 
given by the boundary conditions (3) on a93 and (1 1) on 9’ is solved iteratively; when the solution 
of this system satisfies the required accuracy, the ‘external’ cycle updates the free surface 
configuration by using (10). Therefore at each external step (m) a complete internal cycle is 
performed. The (j)th step of the internal iterative procedure consists of solving the non-linear 
system 

in which the Froude number is defined with respect to the body chord. The quadratic term is 
considered explicitly with the values assumed at the previous step (j-1); condition (11’) is 
imposed on the free surface updated at the previous external step (m). An underrelaxation is used: 
the value of the parameter must decrease as the Froude number grows. The finite difference 
operator 6/61 has been chosen with identical features to those described before for the operator 
6 / 6 x  which compares in the linear case. 
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Figure 2. 2D surface waves due to a submerged dipole (Fr=0.6,  h/L=1.5). The numerical results are obtained with 
60 panels per wavelength. (a) Upstream part of the free surface obtained with the analytical derivative scheme’ and with 
two different radiation conditions at the first node: -, by imposing (28); ---, by imposing (29). (b) Finite differences 
schemez (---) and analytical solution1’ (-). (c) Analytical derivative scheme (---) and analytical solution (-) 
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The internal cycle is carried out until 

max) 1 - ( ( j -1)4/(j)~)~l<(m)&i~~,  
where the tolerance gint has been chosen as a function of the external cycle current error in order 
to optimize the procedure. 

Once the solution of the non-linear problem (3'), (1 1') is obtained, the wave elevation q(x) is 
computed by means of the discretized form of (10): 

An underrelaxation parameter is used also for the external cycle, which is considered over when 

max) 1 - ( (m- l )q / (m)q) j l  < E , , ~ .  

Finally, when the convergence on the external cycle is reached, the wave resistance is computed 
by means of the Bernoulli equation 

N 
R,= -4 ( l -&)ni -xdi  on 89, 

i =  1 

where di is the (i)th boundary element length. 

5. DISCUSSION OF NUMERICAL RESULTS 

The aim of the present paper is to describe a numerical method whose main applications are in 
naval hydrodynamics for ship hull design purposes. Thus the determination of the wave-making 

Table I 

X Y 

0.0o000 
0.00026 
0-00396 
0.01823 
0.04993 
0.10032 
0.16264 
0.22964 
0.30273 
0.37981 
0.45869 
053770 
0.61455 
0.68779 
075604 
0.81325 
086615 
0.91924 
0.96298 
0.99064 
1 ~OOOOO 

0~0oO00 
0.00623 
0.02465 
005379 
0.08975 
0.12624 
0.157 10 
0.17806 
0.18655 
0.18517 
0.17520 
0.15813 
013649 
0.11309 
009035 
0.06980 
0-05003 
0.030 17 
0.01383 
OQ0350 
O W 0 0 0  
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drag is very important and we obtain it by means of pressure computation on the surface of the 
non-lifting body. Figure 1 shows the test case hydrofoil" used for the computations performed in 
this work; the shape of the hydrofoil is given in Table I. In Figure 3(a) is plotted the drag 
encountered by the body advancing in an unbounded fluid versus the number of body boundary 
elements (NPB) used, for different stretching techniques that concentrate the nodes near the 
leading and trailing edges. Such a drag must obviously be equal to zero (DAlembert paradox), 
but unfortunately we see that the accuracy is not so good (all the computations have been 

0.001 0- 

- - - - - . _ - _ _ *  

0.0000 I I I I I I I I I I I I 
50 100 150 200 250 300 350 400 450 500 550 600 650 

N PB 
(a) 

0.002300 1 1 I I I I I I 1 I I I I 

50 100 150 200 250 300 350 400 450 500 550 600 650 
NPB 

(b) 
Figure 3. (a) Computed drag in the case of unbounded fluid. The nodes are distributed along the body surface according 
to a cosine (---)and a hyperbolic tangent (-) stretching. (b) Linear wave resistance versus number of elements on the 

body surface (NPB) 
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performed in double precision). It can be observed that if the computed potential flow does not 
fulfil the DAlambert paradox with reasonable accuracy, the compatibility condition 

a d z  =O 

is also roughly verified. 
In Figure 3(b) is plotted the linear wave resistance minus the drag computed in the absence of 

the free surface effects (Fr = 0.55, h/L = 1.146 78) versus the number of body panels (250 panels are 
arranged on the free surface, with 30 elements per wavelength). For our computations we have 
therefore decided to arrange 256 panels on the body using a cosine-type stretching. On the free 
surface, making use of the strategy outlined in Reference 10, 700 panels have been used, with 
60 elements per wavelength; one-third of the discretized free surface lies upstream with respect to 
the leading edge of the body. 

The simplest non-linear algorithm used (the one proposed in References 13 and 14) consists of 
solving the system (3’), (1 1’) without requiring any accuracy every step, but updating 9’ immedi- 
ately by means of (10); in other words, without the internal cycle of iterations described before. 
Considering the case of hydrofoil submergence h/L= 1.146 78, with this method no results can be 
computed for Fr > 0.47 since the current error on the wave elevation grows indefinitely. In order 
to increase the Froude number range of applicability, the double-cycle scheme can be introduced; 
the range grows until Fr = 0.59. 

Moreover, the introduction of conditions (23) and (24), including viscous correction, makes the 
method more robust, convergence is reached slightly faster and the iterative procedure converges 
up to Fr = 0.71, rather beyond the limit shown by the inviscid scheme. It is worth noticing that the 
introduction of viscosity effects does not cause any significant change in the values of the wave 
resistance; in fact, as shown in Figure 4, the wave amplitude is very lightly damped. In the same 
figure the typical non-linear effect of wave steepness can be observed; moreover, with respect to 
the linear case, a wavelength reduction appears. 

4 5 6 7 0 9 10 1 1  

Figure 4. Computed wave profiles: linear (---), inviscid non-linear (-) and non-linear with viscous correction ( .. .). 
Fr=0.59092, hJL= 1.376 15 
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The numerical wave profiles obtained by means of the method including viscous effects, for 
different depths and Froude numbers, are compared in Figure 5 with the experimental data taken 
from Reference 18 and with the linear solution given by implementing (lTH14'). The agreement 
with the measurements is quite good and the improvement with respect to the linear solution is 
significant. The importance of non-linear effects in the wave resistance problem is also clearly 
observed in Figure 6. Anyway, as pointed out in Reference 18, wave resistance measurements for 
2D bodies are not so easy to perform and the comparison between the wave profiles is more 
reliable. 

- 

Xf L 

- 0 . 0 2 O O W  *.. x 

-0.0250 

X/L 
-0.0300 4 I 1 I I I 

4.00 4.50 5.00 5.50 6.00 6.50 7.00 
(a) 
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0.1M)- 

0.050- 

0.000- 

-0.050- 

-0.150 
-o-'m] , I , I , I , I I ;/L , 
-0.200 

7.00 7.50 8.00 8.50 9.00 9.50 10.50 11.50 12.50 

(c) 

Figure 5. (Continued) 

.400 .450 .500 550 .600 .650 .700 .750 

Figure 6. Experimental (0) and numerical wave resistance: linear ( - . . I  and non-linear (-) 

6.  CONCLUDING REMARKS 

In the present paper a numerical method to implement the exact free surface steady potential flow 
formulation has been described. The proposed algorithm, tested with experimental results, seems 
to be rather reliable. Moreover, both the comparisons with the experimental free surface profiles 
and wave resistance confirm the importance of the non-linear effects. 
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Although the computer code has been vectorized, when the number of panels used becomes 
very large (i.e. more than 1OOO) and Fr is high (i.e. a smaller relaxation parameter must be used), 
the iterative procedure quickly becomes very time-consuming. In dealing with the extension to 
the 3D case, one could consider the use of a quasi-Newton algorithm (e.g. Broyden’s method) in 
the solution of the non-linear system (3’), (11’). Finally, as mentioned before, another natural 
improvement of this method is the use of the analytical calculation of the derivative 6/61 in (1 1’). 
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